If Cos A + Sin A = $$\sqrt{2}$$ Cos A then Cos A- Sin A is equal to: (Where $$0^\circ$$<A<$$90^\circ$$)
Given : $$cos A+sin A=\sqrt2 cos A$$
Squaring both sides, we get :
=>Â $$(cos A+sin A)^2=(\sqrt2 cos A)^2$$
=> $$cos^2A+sin^2A+2sin A.cos A=2cos^2A$$
=> $$1+2sin A.cos A=2(1-sin^2A)$$
=> $$1+2sin A.cos A=2cos=2-2sin^2A$$
=> $$2sin A.cos A=2cos=1-2sin^2A$$ -----------------(i)
To find : $$cos A-sin A=x$$
Squaring both sides, we get :
=> $$x^2=cos^2A+sin^2A-2sin A.cos A$$
Substituting value from equation (i),
=> $$x^2=1-(1-2sin^2A)$$
=> $$x^2=2sin^2A$$
=> $$x=\sqrt{2sin^2A}$$
=> $$x=\sqrt2sin A$$
=> Ans - (C)
Create a FREE account and get: