Find the value of $$\sqrt{(x^2+y^2+2)(x+y-32)}\div \sqrt{xy^3 2^2}$$ when $$x=+1,y=-3$$
we need to find value of $$\sqrt{(x^2+y^2+2)(x+y-32)}\div \sqrt{xy^3 2^2}$$ when $$x=+1,y=-3$$
putting value of x , y
$$\sqrt{(1^2 + (-3)^2 + 2)\times(1 - 3 - 32)}\div \sqrt{1 \times (-3)^3 \times 4}$$
= $$\frac{\sqrt{34}}{3}$$
Create a FREE account and get: