Let angles of $$\triangle$$ABC be $$\angle$$A =$$2\theta$$ , $$\angle$$B = $$3\theta$$ and $$\angle$$C = $$4\theta$$
=> $$\angle$$A + $$\angle$$B + $$\angle$$C = 180°
=> $$2\theta + 3\theta + 4\theta$$ = 180°
=> $$\theta = \frac{180}{9}$$ = 20°
=> $$\angle$$A = 2*20 = 40°
Since, AB | | CD
=> $$\angle$$ACD = $$\angle$$BAC [Alternate angles]
=> $$\angle$$ACD = 40°
Create a FREE account and get: