If the external bisector of the vertical angle $$\angle$$ A of the $$\triangle$$ ABC is parallel to the base BC, then the $$\triangle$$ ABC is a/an
AE is the bisector of the exterior $$\angle$$ DAC of the $$\triangle$$Â ABC and AE || BC
Now, $$\angle$$Â $$1$$ = $$\angle$$Â $$2$$ Â Â (given)
Also, $$\angle$$Â $$B$$ = $$\angle$$Â $$1$$ Â Â (Corresponding angle)
and $$\angle$$Â $$C$$ = $$\angle$$Â $$2$$ Â Â (Alternate angle)
=> $$\angle$$Â $$B$$ = $$\angle$$Â $$C$$
=> AB = AC
So, $$\triangle$$Â ABC is an isosceles triangle.
=> Ans - (B)
Create a FREE account and get: