If $$\frac{a}{b}=\frac{4}{5}$$ and $$\frac{b}{c}=\frac{15}{16}$$, then $$\frac{18^{c^{2}}-7a^{2}}{45c^{2}+20a^{2}}$$ is equal to
Given that $$\frac{a}{b}=\frac{4}{5}$$ and $$\frac{b}{c}=\frac{15}{16}$$
we need to find the value of = $$\frac{18^{c^{2}}-7a^{2}}{45c^{2}+20a^{2}}$$
divide whole equation $$b^2$$
We will get ,
$$\frac{18 \frac{c}{b}^2 - 7 \frac{a}{b}^2 }{45 \frac{c}{b}^2 + 20 \frac{a}{b}^2}$$
$$\frac{18 \frac{16}{15}^2 - 7 \frac{4}{5}^2 }{45 \frac{16}{15}^2 + 20 \frac{4}{5}^2}$$
=$$\frac{1}{4}$$
Create a FREE account and get: