If $$x^4 + x^{-4} = 2599$$, then one of the values of $$x - x^{-1}$$, where x > 0, is equal to:
Given,
$$x^4+x^{-4}=2599$$
it can be written as
$$x^4+\dfrac{1}{x^4}=2599$$
adding 2 both sides
$$x^4+\dfrac{1}{x^4}+2=2599+2$$
or
$$x^4+\dfrac{1}{x^4}+2\times x^2\times (\dfrac{1}{x^2})=2601$$
$$(x^2+\dfrac{1}{x^2})^2=2601$$
$$x^2+\dfrac{1}{x^2}=\sqrt2601$$
$$x^2+\dfrac{1}{x^2}=51$$
now subtracting 2 both sides
$$x^2+\dfrac{1}{x^2}-2=51-2$$
or
$$x^2+\dfrac{1}{x^2}-2\times x^2\times \dfrac{1}{x^2}=49$$
$$(x-\dfrac{1}{x})^2=49$$
$$x-\dfrac{1}{x}=\sqrt49$$
$$x-\dfrac{1}{x}=7$$
or
$$x-x^{-1}=7$$
Create a FREE account and get: