Question 127

If $$x^{2} + y^{2} + 1 = 2x$$, then the value of $$x^{3} + y^{5}$$ is

Solution

$$x^{2} + y^{2} + 1 = 2x$$
$$x^{2} -2x + y^{2} + 1 = 0$$
$$(x^{2} -2x + 1 )+ y^{2} = 0$$
$$(x-1)^{2}+ y^{2} = 0$$
Since $$(x-1)^{2}$$ ≥ 0 for all x, and $$y^{2}$$ ≥ 0 for all y
and $$(x-1)^{2}+ y^{2} = 0$$, then
$$(x-1)^{2}$$ = 0 and $$y^{2}$$ = 0
So, x = 1, y = 0
Hence,
$$x^{3}+y^{5} = 1$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App