If the angle of elevation of the sun changes from $$45^0\ to\ 60^0$$, then the length of the shadow of a pillar decreases by 10m. The height of the pillar is:
Given : CD is the pillar and AB = 10 m
To find : Height of pillar = $$h$$ = ?
Solution :Â In $$\triangle$$ ACD,
=> $$tan(45^\circ)=\frac{CD}{AD}$$
=> $$1=\frac{h}{x+10}$$
=> $$h=x+10$$ -------------(i)
Again, in $$\triangle$$ BCD,
=> $$tan(60^\circ)=\frac{CD}{DB}$$
=> $$\sqrt{3}=\frac{h}{x}$$
=> $$h=x\sqrt{3}$$
=> $$h=(h-10)\sqrt3$$ Â Â [Using (i)]
=> $$h=h\sqrt3-10\sqrt3$$
=> $$h(\sqrt3-1)=10\sqrt3$$
=> $$h=\frac{10\sqrt3}{\sqrt3-1}$$
Rationalizing the denominator, we get :
=> $$h=\frac{10\sqrt3}{\sqrt3-1}\times\frac{(\sqrt3+1)}{(\sqrt3+1)}$$
=> $$h=\frac{10\sqrt3(\sqrt3+1)}{(3-1)}$$
=> $$h=5\sqrt3(\sqrt3+1)$$
=> $$h=5(3+\sqrt3)$$ m
=> Ans - (D)
Create a FREE account and get: