Given : $$\angle$$B = 90 and AB : BC = 2 : 1
To find : $$sin A + cot C$$ = ?
Solution : Let AB = $$2x$$ and BC = $$x$$
In right $$\triangle$$ABC
=> AC = $$\sqrt{(AB)^2 + (BC)^2}$$
=> AC = $$\sqrt{4x^2 + x^2} = \sqrt{5x^2}$$
=> AC = $$\sqrt{5}x$$
=> $$sin A = \frac{BC}{AC}$$
=> $$sin A = \frac{x}{\sqrt{5}x} = \frac{1}{\sqrt{5}}$$
=> $$cot C = \frac{BC}{AB}$$
=> $$cot C = \frac{x}{2x} = \frac{1}{2}$$
Now, $$sin A + cot C$$
= $$\frac{1}{\sqrt{5}} + \frac{1}{2}$$
= $$\frac{2+\sqrt{5}}{2\sqrt{5}}$$
Create a FREE account and get: