If $$x=a\ \cos\theta+b\ \sin\theta$$ and $$y=a\ \sin\theta-b\ \cos\theta$$, the value of $$x^2+y^2$$ is:
$$x=aCos\theta + bSin\theta $$
$$x^2=(aCos\theta +bSin\theta)^2$$
$$=a^2Cos^2\theta+b^Sin^2\theta+2ab$$
$$Cos\theta Sin\theta $$.
Similarly,
$$y^2=b^2Cos^2\theta +a^2Sin^2\theta$$
$$-2abCos\theta Sin\theta$$.
So,$$x^2+y^2$$
$$=(a^2+b^2)Cos^2\theta + (a^2+b^2)$$
$$Sin^2\theta$$.
$$=(a^2+b^2)(Cos^2\theta+Sin^2\theta).$$
we know,$$Cos^2\theta +Sin^2\theta=1$$.
So,$$x^2+y^2=a^2+b^2.$$
Option C is correct.
Create a FREE account and get: