Sign in
Please select an account to continue using cracku.in
↓ →
If $$x^{4}+\frac{1}{x^4}=119$$ and $$x<1$$ the find the positive value of $$x^{3}-\frac{1}{x^3}$$
Expression : $$x^{4}+\frac{1}{x^4}=119$$
=> $$x^4 + \frac{1}{x^4} + 2 = 121$$
=> $$(x^2 + \frac{1}{x^2})^2 = 11^2$$
=> $$x^2 + \frac{1}{x^2} = 11$$
=> $$x^2 + \frac{1}{x^2} - 2 = 9$$
=> $$(x - \frac{1}{x})^2 = 3^2$$
=> $$x - \frac{1}{x} = 3$$
Now, cubing both sides, we get :
=> $$x^3 - \frac{1}{x^3} - 3.x.\frac{1}{x}.(x-\frac{1}{x}) = 27$$
=> $$x^3 - \frac{1}{x^3} = 27+3*3$$ = 36
Create a FREE account and get: