For real a, b, c if $$a^2 + b^2 + c^2 = ab + bc + ca$$, the value of $$\frac{(a+b)}{c}$$
Given, Â Â $$a^2+b^2+c^2=ab+bc+ca$$
Multiplying both sides by "2", it becomes
$$2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)$$
$$2a^2+2b^2+2c^2=2ab+2bc+2ca$$
$$a^2+a^2+b^2+b^2+c^2+c^2-2ab-2bc-2ca=0$$
$$\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2ca\right)+\left(c^2+a^2-2ca\right)=0$$
$$\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0$$
Sum of squares is zero so each term should be zero
$$=$$>Â Â Â $$\left(a-b\right)^2=0$$, $$\left(b-c\right)^2=0$$, $$\left(c-a\right)^2=0$$
$$=$$> Â Â Â $$a-b=0$$, Â Â Â $$b-c=0$$, Â Â Â $$c-a=0,$$
$$=$$>      $$a=b$$,        $$b=c$$,         $$c=a$$
$$=$$>Â Â Â Â Â $$a=b=c$$
Therefore    $$\ \frac{\ a+b}{c}=\ \frac{\ a+a}{a}=\ \frac{\ 2a}{a}=2$$
Create a FREE account and get: