Two circles of radii 5 cm and 3 cm intersect each other at A and B,and the distance betweentheir centres is 6 cm. The length (in cm) of the common chord AB is:
The two circles with centre O and O' intersect each other at A and B and OO' = 6 cm.
Also, OC and O'C are the perpendicular bisectors of AB.
Let $$OC=x$$ cm and $$O'C=(6-x)$$ cm
In right $$\triangle$$ ACO,
=> $$(OA)^2=(OC)^2+(AC)^2$$
=> $$(OA)^2=(OC)^2+[(O'A)^2-(O'C)^2]$$
=> $$25=x^2+9-(6-x)^2$$
=> $$16=12x-36$$
=> $$x=\frac{52}{12}=\frac{13}{3}$$
$$\therefore$$ $$(AC)^2=25-\frac{169}{9}$$
=> $$AC=\sqrt{\frac{56}{9}}=\frac{2\sqrt{14}}{3}$$
$$\therefore$$ AB = 2 AC
= $$\frac{4\sqrt{14}}{3}$$
=> Ans - (D)
Create a FREE account and get: