Question 123

If $$ x = \sqrt[3]{7}+3$$ then the value of $$x^{3}-9x^{2}+27x-34$$ is:

Solution

Given : $$ x = \sqrt[3]{7}+3$$

=> $$x-3=\sqrt[3]7$$

Cubing both sides, we get :

=> $$(x-3)^3=(\sqrt[3]7)^3$$

=> $$x^3-27-3(3x)(x-3)=7$$

=> $$x^3-27-9x^2+27x-7=0$$

=> $$x^{3}-9x^{2}+27x-34=0$$

=> Ans - (A)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App