Sign in
Please select an account to continue using cracku.in
↓ →
In ∆ABC, ∟ABC = 70°, ∟BCA = 40°. O is the point of intersection of the perpendicular bisectors of the sides, then the angle LBOC is
Given : $$\angle$$ABC = 70° and $$\angle$$ACB = 40°
OB and OC are perpendicular bisectors
=> $$\angle$$BOC = 2*$$\angle$$BAC ----------Eqn(1)
In $$\triangle$$ABC
=> $$\angle$$BAC + $$\angle$$ABC + $$\angle$$BCA = 180°
=> $$\angle$$BAC = 180°-(70°+40°) = 180°-110°
=> $$\angle$$BAC = 70°
Using eqn(1), we get :
$$\angle$$BOC = 2*70 = 140°
Create a FREE account and get: