If tan$$\theta\ $$+ sec$$\ \theta\ $$= 3, $$\theta\ $$being acute, the value of 5 sin$$\theta\ $$ is:
Given : $$tan\theta+sec\theta=3$$
=> $$\frac{sin\theta}{cos\theta}+\frac{1}{cos\theta}=3$$
=> $$sin\theta+1=3cos\theta$$
Squaring both sides, we get :
=> $$sin^2\theta+1+2sin\theta=9cos^2\theta$$
=> $$sin^2\theta+1+2sin\theta=9(1-sin^2\theta)$$
=> $$sin^2\theta+1+2sin\theta=9-9sin^2\theta$$
=> $$10sin^2\theta+2sin\theta-8=0$$
Let $$sin\theta=x$$
=> $$5x^2+x-4=0$$
=> $$5x^2+5x-4x-4=0$$
=> $$5x(x+1)-4(x+1)=0$$
=> $$(x+1)(5x-4)=0$$
=> $$x=-1,\frac{4}{5}$$
$$\because \theta$$ is acute, => $$sin\theta\neq-1$$
$$\therefore$$ $$sin\theta=\frac{4}{5}$$
=> Ans - (C)
Create a FREE account and get: