Question 121

If  $$x^2-3x +1$$, then value of $$x^2+x+\frac{1}{x}+\frac{1}{x^2}$$  is

Solution

Given $$x^2-3x +1=0 $$
or $$ x^2-3x=-1 $$
or $$ (x-3)=\frac{-1}{x}$$
or $$ (x+ \frac{1}{x})=3 $$
Now according to given question $$x + \frac{1}{x} + x^2+\frac{1}{x^2}$$
or $$x+\frac{1}{x} +(x+\frac{1}{x})^2-2$$
After putting value of $$x+\frac{1}{x}$$ in above equation , it will get reduced to 10.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App