If $$4Sin^2\theta-1=0$$ and angle$$\theta$$ is less than $$90^\circ$$. Then the value of $$Cos^2\theta + tan^2\theta$$ is:
Take $$(0^0<\theta<90^0)$$
Given : $$4sin^2\theta-1=0$$
=>Â $$4sin^2\theta=1$$
=>Â $$sin^2\theta=\frac{1}{4}$$
=> $$sin\theta=\sqrt{\frac{1}{4}}=\frac{1}{2}$$
=> $$\theta=sin^{-1}(\frac{1}{2})$$
=> $$\theta=30^\circ$$
To find : $$Cos^2\theta + tan^2\theta$$
= $$cos^2(30^\circ)+tan^2(30^\circ)$$
= $$(\frac{\sqrt3}{2})^2+(\frac{1}{\sqrt3})^2$$
= $$\frac{3}{4}+\frac{1}{3}=\frac{13}{12}$$
=> Ans - (B)
Create a FREE account and get: