If $$Cos\ \theta + Sin\ \theta$$ = m and $$Sec\ \theta + Cosec\ \theta$$= n then the value of n($$m^{2}-1$$) is equal to:
Given : $$cos\ \theta + sin\ \theta=m$$ --------------(i)
Squaring both sides, we get :
=>Â $$(cos\ \theta + sin\ \theta)^2=(m)^2$$
=> $$cos^2\ \theta+sin^2\ \theta+2sin\ \theta.cos\ \theta=m^2$$
=> $$1+2sin\ \theta.cos\ \theta=m^2$$
=> $$sin\ \theta.cos\ \theta=\frac{m^2-1}{2}$$ -------------(ii)
Also, it is given that : $$sec\ \theta + cosec\ \theta=n$$
=>Â $$\frac{1}{cos\ \theta}+\frac{1}{sin\ \theta}=n$$
=> $$\frac{sin\ \theta+cos\ \theta}{sin\ \theta.cos\ \theta}=n$$
Using equations (i) and (ii), => $$m=\frac{m^2-1}{2}\times n$$
=> $$n(m^2-1)=2m$$
=> Ans - (D)
Create a FREE account and get: