If ABCD be a rhombus, AC is its smallest diagonal and $$\angle\ $$ABC = $$60^\circ$$, find length of a side of the rhombus when AC = 6 cm.
Given : AC = 6 cm and $$\angle\ $$ABC = $$60^\circ$$
Diagonals of a rhombus bisect each other at right angle and also bisects the opposite angles.
=> OC = $$\frac{6}{2}=3$$ cm and $$\angle$$ OBC = $$\frac{60}{2}=30^\circ$$
In $$\triangle$$ OBC,
=> $$sin(\angle OBC)=\frac{OC}{BC}$$
=> $$sin(30^\circ)=\frac{3}{BC}$$
=> $$\frac{1}{2}=\frac{3}{BC}$$
=> $$BC=2\times3=6$$ cm
=> Ans - (D)
Create a FREE account and get: