Sign in
Please select an account to continue using cracku.in
↓ →
If $$x = \frac{\sqrt{5}-2}{\sqrt{5}+2}$$, then $$x^4 + x^{-4}$$ is
Given : $$x = \frac{\sqrt{5}-2}{\sqrt{5}+2}$$
=> $$x = \frac{\sqrt{5}-2}{\sqrt{5}+2}\times(\frac{\sqrt5-2}{\sqrt5-2})$$
=> $$x=\frac{(\sqrt5-2)^2}{5-4}$$
=> $$x=9-4\sqrt5$$ ------------(i)
Similarly, $$\frac{1}{x}=9+4\sqrt5$$ -------------(ii)
To find : $$x^4 + x^{-4}=x^4+\frac{1}{x^4}$$
= $$(x^2+\frac{1}{x^2})^2-2$$
= $$[(x+\frac{1}{x})^2-2]^2-2$$
Substituting values from equations (i) and (ii), we get :
= $$[(9-4\sqrt5+9+4\sqrt5)^2-2]^2-2$$
= $$[324-2]^2-2$$
= $$103684-2=103682$$, which is an integer.
=> Ans - (C)
Create a FREE account and get: