D is a point on the side BC of a $$\triangle$$ABC such that $$\angle ADC = \angle BAC$$. If CA = 10 cm and BC = 16 cm then the length of CD is:
Given that CA= 10, BC = 16 in the $$\triangle ABC $$
from the above triangle,
  $$ \triangle ABC and \triangle DAC $$
$$\angle ADC = \angle BAC$$ (given that)
 $$\Rightarrow \angle A = \angle D $$Â
$$ \angle B = \angle DACÂ $$
then $$\triangle ABC and $$ BDA $$
$$\Rightarrow \frac {AC} {DC} = \frac{BC}{AC} $$
$$\Rightarrow \frac {10}{CD} = \frac{16}{10} $$ (put the value)
$$\Rightarrow CD = \frac{100}{16} $$
$$\Rightarrow CD = 6.25 $$ CM AnsÂ
Create a FREE account and get: