If $$x=a(sin\ \theta + cos\ \theta)$$ and $$y=b(sin\ \theta - cos\ \theta)$$, then the value of $$\frac{x^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}$$ is:
Given : $$x=a(sin\ \theta + cos\ \theta)$$ and $$y=b(sin\ \theta - cos\ \theta)$$
Squaring both sides, we get :
=> $$x^2=a^2(sin\ \theta+cos\ \theta)^2$$
=> $$x^2=a^2(sin^2\ \theta+cos^2\ \theta+2sin\ \theta.cos\ \theta)$$
=> $$x^2=a^2(1+2sin\ \theta.cos\ \theta)$$
=> $$\frac{x^2}{a^2}=1+2sin\ \theta.cos\ \theta$$ ----------------(i)
Similarly, $$\frac{y^2}{b^2}=1-2sin\ \theta.cos\ \theta$$ ----------------(i)
Adding both equations (i) and (ii),Â
=>Â $$\frac{x^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}$$ $$=(1+2sin\ \theta.cos\ \theta)+(1-2sin\ \theta.cos\ \theta)$$
= $$1+1=2$$
=> Ans - (C)
Create a FREE account and get: