Expression : $$ x^{2}-3x+1=0$$
=> $$x^2 + 1 = 3x$$
=> $$x + \frac{1}{x} = 3$$ ------------------Eqn(1)
To find : $$\frac{x^{6}+x^{4}+x^{2}+1}{x^3}$$
= $$(x^3 + \frac{1}{x^3}) + (x + \frac{1}{x})$$
= $$[(x + \frac{1}{x})^3 - 3.x.\frac{1}{x}(x + \frac{1}{x})] + (x + \frac{1}{x})$$
Using eqn (1)
= $$3^3 -3*3 + 3$$ = 27-9+3
= 21
Create a FREE account and get: