If the line passes through the points (3,-5) and (-2, 7), then x is the intercept is
Solution
$$y\ -y1\ =\ \frac{\left(y2-y1\right)}{\left(x2-x1\right)}\left(x-x1\right)$$
Putting the values,
y2 = 7, x2 = -2
y1=-5, x1= 3
$$y\ -\left(-5\right)\ =\ \frac{\left(7-\left(-5\right)\right)}{\left(-2-\left(3\right)\right)}\left(x-3\right)$$
$$y\ +5\ =\ \frac{\left(12\right)}{\left(-5\right)}\left(x-3\right)$$
$$-5\left(y\ +5\right)\ =\ \left(12\right)\left(x-3\right)=>-5y-25=12x-36$$
on reaarranging,
12x + 5y =11
For ,x intercept
putting y=0
$$x=\frac{11}{12}$$ Answer
Create a FREE account and get: