If a function $$f : R \rightarrow R$$ is defined by $$f(x) = x^{2} + 1$$, then $$f^{-1}(26) =$$
Solution
$$f(x) = x^{2} + 1$$, then $$f^{-1}(26) =$$
Let f(x) = y
$$y = x^{2} + 1$$, then $$f^{-1}(26) =$$
$$x\ =\ \sqrt{\ \left(y-1\right)}$$
putting y =26
$$f^{-1}(26) =$$ = $$\sqrt{\ \left(26-1\right)}=\sqrt{\ 25}\ $$
Range = (-5,+5) Answer
Create a FREE account and get: