Question 116

If $$\frac{a}{b}+\frac{b}{a}-1=0$$, then the value of $$a^{3}+b^{3}$$ is

Solution

$$\frac{a}{b} + \frac{b}{a} -1 = 0$$

$$\frac{a^{2}+b^{2}}{ab} -1 = 0$$

$$a^{2}+b^{2} - ab = 0$$

We know $$a^{3}+b^{3}={(a+b)}{(a^{2}+b^{2}}{-ab)} $$

As $$a^{2}+b^{2} - ab = 0$$, therefore $$a^{3}+b^{3}={(a+b)}{(a^{2}+b^{2}}{-ab)} =0$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App