If cos$$\theta$$ =$$\frac{P}{\sqrt{p^{2}+q^{2}}}\ $$, then the value of tan$$\theta\ $$ is:
Expression :Â cos$$\theta$$ =$$\frac{P}{\sqrt{p^{2}+q^{2}}}\ $$ -------------(i)
=> $$\frac{1}{cos\theta}=\frac{\sqrt{p^2+q^2}}{p}$$
=> $$sec\theta=\frac{\sqrt{p^2+q^2}}{p}$$
Squaring both sides, we get :
=>Â $$sec^2\theta=(\frac{\sqrt{p^2+q^2}}{p})^2$$
=>Â $$sec^2\theta=\frac{p^2+q^2}{p^2}$$
Subtracting '1' from both sides,
=>Â $$sec^2\theta-1=\frac{p^2+q^2}{p^2}-1$$
=> $$tan^2\theta=\frac{(p^2+q^2)-p^2}{p^2}$$
=> $$tan^2\theta=\frac{q^2}{p^2}$$
Taking square root on both sides, we get :
=> $$\sqrt{tan^2\theta}=\sqrt{\frac{q^2}{p^2}}$$
=> $$tan\theta=\frac{q}{p}$$
=> Ans - (A)
Create a FREE account and get: