AB is the diameter of a circle with centre O. P be a point on it. If $$\angle POA = 120^\circ$$. Then, $$\angle PBO = ?$$
Given, Â $$\angle POA = 120^\circ$$
From the figure,
$$\angle POA$$ +Â $$\angle POB$$ =Â $$180^\circ$$
$$=$$> Â $$120^\circ$$ +Â $$\angle POB$$ =Â $$180^\circ$$
$$=$$> Â $$\angle POB$$ =Â $$60^\circ$$
OP and OB are radius of the circle
$$=$$>Â OP = OB
In $$\triangle\ $$OPB, angles opposite to OP and OB are equal
$$\angle PBO$$ =Â $$\angle BPO$$
$$\angle POB$$ + $$\angle PBO$$ + $$\angle BPO$$ = $$180^\circ$$
$$=$$> Â $$60^\circ$$ +Â $$\angle PBO$$ +Â $$\angle PBO$$ =Â $$180^\circ$$
$$=$$>Â 2$$\angle PBO$$ =Â $$120^\circ$$
$$=$$>Â $$\angle PBO$$ = $$60^\circ$$
Hence, the correct answer is Option D
Create a FREE account and get: