Question 115

If x = 1 - โˆš2 , then the value of $$(x - 1/x)^3$$

Solution

Expression : $$x = 1 - \sqrt{2}$$

=> $$\frac{1}{x} = \frac{1}{1 - \sqrt{2}}$$

=> $$\frac{1}{x} = \frac{1}{1 - \sqrt{2}} \times \frac{1 + \sqrt{2}}{1 + \sqrt{2}}$$

=> $$\frac{1}{x} = - 1 - \sqrt{2}$$

To find : $$(x - \frac{1}{x})^3$$

= $$(1 - \sqrt{2} + 1 + \sqrt{2})^3$$

= $$2^3 = 8$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App