In triangle ABC, AB = 12 cm, ∠B = 60°, the perpendicular from A to BC meets it at D. The bisector of ∠ABC meets AD at E. Then E divides AD in the ratio
Given : $$\angle$$ABC = 60 , AB = 12 cm
To find : AE : ED
Solution : From $$\triangle$$ABD
=> $$sin 60 = \frac{AD}{BD}$$
=> $$\frac{\sqrt{3}}{2} = \frac{AD}{12}$$
=> $$AD = 6\sqrt{3}$$ cm
Again,
=> $$cos 60 = \frac{BD}{AB}$$
=> $$\frac{1}{2} = \frac{BD}{12}$$
=> $$BD = 6$$ cm
Also, BF is angle bisector of angle B => $$\angle$$EBD = 30
From $$\triangle$$ BDE
=> $$tan 30 = \frac{DE}{BD}$$
=> $$\frac{1}{\sqrt{3}} = \frac{DE}{6}$$
=> $$DE = 2\sqrt{3}$$ cm
$$\therefore$$ $$\frac{AE}{ED} = \frac{AD - ED}{ED}$$
= $$\frac{6\sqrt{3} - 2\sqrt{3}}{2\sqrt{3}}$$
= $$\frac{4\sqrt{3}}{2\sqrt{3}} = \frac{2}{1}$$
=> Required ratio = 2 : 1
Create a FREE account and get: