Given, $$\sin Q + \cos Q = \surd2 \sin (90^\circ - Q)$$
$$=$$>Â $$\sin Q+\cos Q=\surd2\cos Q$$
$$=$$> Â $$\sin Q=\surd2\cos Q-\cos Q$$
$$=$$> Â $$\sin Q=\left(\surd2-1\right)\cos Q$$
$$=$$> Â $$\frac{\cos Q}{\sin Q}=\frac{1}{\surd2-1}$$
$$=$$> Â $$\cot Q=\frac{1}{\surd2-1}\times\frac{\surd2+1}{\surd2+1}$$
$$=$$> Â $$\cot Q=\frac{\surd2+1}{2-1}$$
$$=$$> Â $$\cot Q=\surd2+1$$
Hence, the correct answer is Option C
Create a FREE account and get: