If $$\sin A - \cos A$$= $$\frac{\sqrt{3}-1}{2}$$, then the value of $$\sin A \cos A$$Â is
Given, $$\sin A-\cos A=\frac{\ \sqrt{\ 3}-1}{2}$$
Squaring on both sides we get
$$\sin^2A+\cos^2A-2\sin A\cos A=\ \frac{\left(\sqrt{\ 3}\right)^2+1^2-2\sqrt{\ 3}}{4}$$
$$1-2\sin A\cos A=\ \frac{4-2\sqrt{\ 3}}{4}$$
$$2\sin A\cos A= 1-\left(\frac{4-2\sqrt{\ 3}}{4}\right)$$
$$2\sin A\cos A= \frac{4-4+2\sqrt{\ 3}}{4}$$
$$2\sin A\cos A=\frac{2\sqrt{\ 3}}{4}$$
$$\sin A\cos A=\frac{\sqrt{\ 3}}{4}$$
Create a FREE account and get: