The tangent at a point A on a circle with center O intersects the diameter PQ of the circle, when extended,at point B. If $$\angle BAQ = 105^\circ$$, then $$\angle APQ$$ is equal to:
Let $$\angle AQO = x$$
$$ \angle AOP= 2x$$
from the above figure BA is tangentÂ
then $$\ angle OAB = 90^\circ $$
$$ \angle OAQ = 105^\circ - 90 ^\circ $$
           = $$15 ^\circ$$ (Given $$\angle BAQ = 105^\circ $$)Â
So $$ \angle OQA = \angle OAQ = 15^\circ $$
then $$ \triangle AOP $$,Â
$$\angle OPA + \angle OAP + 30^\circ = 180^\circ $$
$$\Rightarrow 2\angle OPA = 180^\circ -30^\circ = 150^\circ $$
$$\Rightarrow \angle OPA = \angle APQ = 75^\circ $$ AnsÂ
Create a FREE account and get: