Aright circular cylinder of maximum possible size is cut out from a solid wooden cube. The remaining material of the cube is what percentage of the original cube? (Take $$\pi$$= 3.14)
let side of cube x unit.
if size of cylinder is  max, height(h) and diameter(d) of cylinder will be x unit,
radius,r=d/2
$$\rightarrow$$r=x/2
volume of cylinder$$={\pi r^2h}$$
               $$=\pi (\dfrac{x}{2})^2x$$
              $$=\pi \dfrac{x^3}{4}unit^3$$
volume of remaining material of cube=original volume of cube - volume of cylinder
                            $$ =x^3-\pi \dfrac{x^3}{4}$$
                            $$=x^3(1-\dfrac{\pi}{4})unit^3$$
required percentage $$=\dfrac{volume of remaining material\times100}{original volume of cube}Â $$
                $$\rightarrow={\dfrac {x^3(1-\pi/4)}{x^3}}100$$
                 $$\rightarrow=(1-\dfrac{\pi}{4})\times100$$
                 $$\rightarrow=(1-\dfrac{3.14}{4})\times100$$
                 $$\rightarrow=100-\dfrac{314}{4}$$
                  $$\rightarrow=\dfrac{400-314}{4}$$
                  $$\rightarrow=\dfrac{86}{4}$$
                  $$\rightarrow=21.5$$
Create a FREE account and get: