Question 112

Aright circular cylinder of maximum possible size is cut out from a solid wooden cube. The remaining material of the cube is what percentage of the original cube? (Take $$\pi$$= 3.14)

Solution

let side of cube x unit.

if size of cylinder is  max, height(h) and diameter(d) of cylinder will be x unit,

radius,r=d/2

$$\rightarrow$$r=x/2

volume of cylinder$$={\pi r^2h}$$

                            $$=\pi (\dfrac{x}{2})^2x$$

                            $$=\pi \dfrac{x^3}{4}unit^3$$

volume of remaining material of cube=original volume of cube - volume of cylinder

                                                       $$  =x^3-\pi \dfrac{x^3}{4}$$

                                                       $$=x^3(1-\dfrac{\pi}{4})unit^3$$

required percentage $$=\dfrac{volume of remaining material\times100}{original volume of cube} $$

                                $$\rightarrow={\dfrac {x^3(1-\pi/4)}{x^3}}100$$

                                 $$\rightarrow=(1-\dfrac{\pi}{4})\times100$$

                                 $$\rightarrow=(1-\dfrac{3.14}{4})\times100$$

                                  $$\rightarrow=100-\dfrac{314}{4}$$

                                    $$\rightarrow=\dfrac{400-314}{4}$$

                                    $$\rightarrow=\dfrac{86}{4}$$

                                    $$\rightarrow=21.5$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App