Question 111

Two concentric circles are drawn with radii 12 cm and 13 cm. What will be the length of any chord of the larger circle that is tangent to the smaller circle ?

Solution

GivenĀ : $$C_1$$ and $$C_2$$ be the two concentric circles having radius $$r_1=13$$ cm and $$r_2=12$$ cm respectively.

To findĀ : AB = ?

Solution :Ā AB is the the tangent to the circle $$C_1$$, hence $$\angle$$ OPB = $$90^\circ$$

Also,Ā the perpendicularĀ from the centre of a circle to a chord bisects the chord.

Thus, in $$\triangle$$ OPB,

=> $$(PB)^2=(OB)^2-(OP)^2$$

=> $$(PB)^2=(13)^2-(12)^2$$

=> $$(PB)^2=169-144=25$$

=> $$PB=\sqrt{25}=5$$ cm

$$\therefore$$ AB = $$2\times5=10$$ cm

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App