Question 111

$$\frac{sec^{2}\theta-\cot^{2}(90^{\circ}-\theta)}{cosec^{2}67^{\circ}-\tan^{2}23^{\circ}}+sin^{2}40^{\circ}+sin^{2}50^{\circ}$$ is equal to

Solution

Expression : $$\frac{sec^{2}\theta-\cot^{2}(90^{\circ}-\theta)}{cosec^{2}67^{\circ}-\tan^{2}23^{\circ}}+sin^{2}40^{\circ}+sin^{2}50^{\circ}$$

= $$\frac{sec^2 \theta - tan^2 \theta}{cosec^2 67 - tan^2 (90 - 67)} + sin^2 40 + sin^2 (90 - 40)$$

= $$\frac{1}{cosec^2 67 - cot^2 67} + sin^2 40 + cos^2 40$$

= $$1 + 1 = 2$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App