ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle $$ADC = 130^\circ$$. Then angle BAC is equal to:
Given,
$$ \angle ADC=130^{\circ\ }$$
we know that,
sum of opposite angle of cyclic quadrilateral=$$180^{\circ\ }$$
$$\angle ADC+\angle ABC=180^{\circ\ }$$
$$130^{\circ\ }+\angle ABC=180^{\circ\ }$$
$$\angle ABC=50^{\circ\ }$$
$$In\ \triangle ABC,$$
$$\angle ABC=50^{\circ\ }, \angle BCA=90^{\circ\ }$$
$$\angle BAC=40^{\circ\ }$$
Create a FREE account and get: