If $$\cos^2 \theta - \sin^2 \theta = \tan^2 \phi$$ then which of the following is true?
Expression :Â $$\cos^2 \theta - \sin^2 \theta = \tan^2 \phi$$
=> $$cos^2\theta-sin^2\theta=\frac{sin^2\phi}{cos^2\phi}$$
=>Â $$\frac{cos^2\theta-sin^2\theta}{cos^2\theta+sin^2\theta}=\frac{sin^2\phi}{cos^2\phi}$$
By componendo and dividendo
=> $$\frac{-sin^2\theta}{cos^2\theta}=\frac{sin^2\phi-cos^2\phi}{sin^2\phi+cos^2\phi}$$
=> $$cos^2\phi-sin^2\phi=tan^2\theta$$
=> Ans - (B)
Create a FREE account and get: