$$tan(x + y) = \frac{tan x + tan y}{1- tan x tan y}$$
$$tan(x - y) = \frac{tan x - tan y}{1+ tan x tan y}$$
$$tan(x+y)tan(x-y) =1$$
$$ \frac{tan x + tan y}{1- tan x tan y} \times \frac{tan x - tan y}{1+ tan x tan y} =1 $$
$$ \frac{tan^{2} x - tan^{2} y}{1 - tan^{2} x tan ^{2} y} =1$$
$$ tan^{2} x - tan^{2} y =1 - tan^{2} x tan ^{2} y$$
$$ tan^{2} x + tan^{2} x tan^{2} y =1 + tan ^{2} y$$
$$ tan^{2} x (1 + tan^{2} y) =1 + tan ^{2} y$$
$$ tan^{2} x =1$$
$$ tan x =1$$
Option B is the correct answer.
Create a FREE account and get: