Vijay and Sahil together complete a piece of work in 40 days, Sahil and Ranjit can complete the same work in 48 days and Ranjit and Vijay can complete the same work in 60 days. In how many days can all the three complete the same work while working together?
Let, (V + S)'s one day work = $$\frac{1}{40}$$, (S + R)'s one day work = $$\frac{1}{48}$$ and (R + V)'s one day work = $$\frac{1}{60}$$
2(V + S + R) =Â $$\frac{1}{40}$$ +Â $$\frac{1}{48}$$ +Â $$\frac{1}{60}$$
(V + S + R) = $$\frac{1}{2}(\frac{1}{40}$$ +Â $$\frac{1}{48}$$ +Â $$\frac{1}{60}$$)
(V + S + R) = $$\frac{1}{2}(\frac{12 + 10 + 8}{480}$$)
(V + S + R) = $$\frac{1}{2}(\frac{30}{480}$$)
(V + S + R) = $$\frac{1}{2}(\frac{1}{16}$$)
(V + S + R) = $$\frac{1}{32}$$
Total number of days taken by all three together = 32 days.
Hence, option C is the correct answer.
Create a FREE account and get: