In the Figure in $$\triangle$$ PQR PT $$\perp$$ QR at T and PS is the bisector of $$\angle QPR$$.If $$\angle PQR=78^\circ$$, and $$\angle TPS = 24^\circ$$ then the measure of $$\angle PRQ$$ is
Given figureÂ
$$\triangle$$ PQR PT $$\perp$$ QR at T and PS is the bisector of $$\angle QPR$$.If $$\angle PQR=78^\circ$$, and $$\angle TPS = 24^\circ$$
In the $$\triangle $$ PQTÂ
$$ 90^\circ+ 78 ^\circ+ \angle QPT = 180 ^\circ$$
$$\Rightarrow \angle QPT = 180 ^\circ = 180^\circ - 168^\circ $$
                    = $$12 ^\circ$$Â
then $$\angle QPS = 12^\circ + 24^\circ $$
              = $$ 36 ^\circ $$
PS is bisect $$\angle QPR $$
then $$\angle SPR = 36^\circ $$
In $$\triangle PTS , 90^\circ +24 ^\circ + \angle PST = 180^\circ $$
$$\angle PST = 180^\circ - 114^\circ $$
           = $$66\circ $$
the $$\angle PST = \angle PRS + \angle RPS $$
    $$ 66^\circ = 36 ^\circ = \angle PRQ $$
$$\Rightarrow \angle PRQ = 66^\circ - 36^\circ $$
$$\Rightarrow \angle PRQ = 30^\circ $$ Ans Â
Create a FREE account and get: