Question 103

If $$(a+\frac{1}{a})^2=3$$, then find the value of $$a^{30}+a^{24}+a^{18}+a^{12}+a^{6}+1$$

Solution

Given : $$(a+\frac{1}{a})^2=3$$

=> $$(a+\frac{1}{a})=\sqrt3$$ --------------(i)

Cubing both sides, we get :

=> $$(a+\frac{1}{a})^3=(\sqrt3)^3$$

=> $$a^3+\frac{1}{a^3}+3(a)(\frac{1}{a})(a+\frac{1}{a})=3\sqrt3$$

=> $$a^3+\frac{1}{a^3}+3\sqrt3=3\sqrt3$$

=> $$a^3+\frac{1}{a^3}=0$$

=> $$\frac{a^6+1}{a^3}=0$$

=> $$a^6=-1$$

To find : $$a^{30}+a^{24}+a^{18}+a^{12}+a^{6}+1$$

= $$(a^6)^5+(a^6)^4+(a^6)^3+(a^6)^2+(a^6)+1$$

= $$(-1)^5+(-1)^4+(-1)^3+(-1)^2+(-1)+1$$

= $$-1+1-1+1-1+1=0$$

=> Ans - (D)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App