Sign in
Please select an account to continue using cracku.in
↓ →
If $$f(x) = sin^{2} x + cosec^{2} x$$, then the minimum value of f(x) is
Expression : $$f(x) = sin^{2} x + cosec^{2} x$$
= $$(sin x - cosec x)^2 + 2.sin x.cosec x$$
= $$(sin x - cosec x)^2 + 2$$
Since, $$(sin x - cosec x)^2$$ is always positive
=> Min value of f(x) = 2
Create a FREE account and get: