A vertical pole AB is standing at the centre B of a square PQRS. If PR subtends an angle of $$90^{0}$$at the top A of the pole, then the angle subtended by a side of the square at A is:
The pole is standing at the centre of the square, => PA = PR
=> $$\angle$$ APB =Â $$\angle$$Â ARB = $$45^\circ$$
Let the side of the square = $$x$$ units
=> PR (diagonal) = $$\sqrt2x$$ units
Hence, PB = $$\frac{x}{\sqrt2}$$ units
Now, in $$\triangle$$ APB,
=> $$tan(\angle APB)=\frac{AB}{PB}$$
=> $$tan(45^\circ)=1=\frac{AB}{PB}$$
=> $$AB=PB=\frac{x}{\sqrt2}$$
Thus, $$PA=\sqrt{(\frac{x}{\sqrt2})^2+(\frac{x}{\sqrt2})^2}$$
=> $$PA=\sqrt{\frac{x^2}{2}+\frac{x^2}{2}}=\sqrt{x^2}=x$$
Similarly, $$QA=x$$ units
Hence, PA = PQ = QA = $$x$$
$$\therefore$$Â $$\angle$$Â PAQ = $$60^\circ$$
=> Ans - (C)
Create a FREE account and get: