Which value among  $$\sqrt[4]{7}, \sqrt[3]{11}\ and\ \sqrt[12]{1257}\ $$is the largest ?
Terms : $$\sqrt[4]{7}, \sqrt[3]{11}\ and\ \sqrt[12]{1257}\ $$
L.C.M. of exponents (4,3,12) = 12
Multiplying the exponents by 12, we get :
$$\equiv(7)^{\frac{12}{4}},$$Â $$(11)^{\frac{12}{3}}$$ and $$(1257)^{\frac{12}{12}}$$
$$\equiv(7)^3,(11)^4,(1257)^1$$
$$\equiv343,14641,1257$$
Thus, largest number = $$14641\equiv\sqrt[3]{11}$$
=> Ans - (A)
Create a FREE account and get: