Sign in
Please select an account to continue using cracku.in
↓ →
In $$\triangle ABC, \angle B=60^\circ$$, and $$\angle C=40^\circ$$, AD and AE are respectively the bisector of $$\angle A$$ and perpendicular on BC. The measure of $$\angle EAD$$ is:
Given : AD is angle bisector of $$\angle$$ A and AE is perpendicular to BC.
To find : $$\angle$$ EAD = ?
In $$\triangle$$ ABC,
=> $$\angle$$ A + $$\angle$$ B + $$\angle$$ C = $$180^\circ$$
=> $$\angle$$ A + $$60^\circ+40^\circ=180^\circ$$
=> $$\angle$$ A = $$180^\circ-100^\circ=80^\circ$$
$$\because$$ $$\angle$$ BAD = $$\angle$$ CAD
=> $$\angle$$ CAD = $$\frac{80}{2}=40^\circ$$
Using external angle property, => $$\angle$$ ADE = $$\angle$$ CAD + $$\angle$$ C
=> $$\angle$$ ADE = $$40^\circ+40^\circ=80^\circ$$
$$\therefore$$ In $$\triangle$$ EAD,
=> $$\angle$$ EAD + $$\angle$$ ADE + $$\angle$$ DEA = $$180^\circ$$
=> $$\angle$$ EAD + $$80^\circ+90^\circ=180^\circ$$
=> $$\angle$$ EAD = $$180^\circ-170^\circ=10^\circ$$
=> Ans - (D)
Create a FREE account and get: