If $$x^{4}+ x^{2} y^{2}+y^{4}=21$$, and $$x^{2}+xy+y^{2} = 3,$$ then what is the value of 4xy?
Given that $$x^{4}+ x^{2} y^{2}+y^{4}=21$$
$$x^{2}+xy+y^{2} = 3,$$ Equestion (1)
$$\Rightarrow (x^{2} + xy + y^{2}) ^ {2} = (3)^2 $$ (Sqaring both side (1))
$$\Rightarrow x^{4} +x^{2}y^{2} + y^{4} + 2 x^{3}y +2xy^{3} + 2 x^{2}y^{2} = 9 $$
(From the formula$$ (a+b+c)^2 = a^2 +b^2 +c^2 + 2ab+2bc+2ca $$)
$$\Rightarrow 21 + 2 x^{3}y + 2xy^{3}+2x^2y^2 = 9 $$ (put the value from given question )
$$\Rightarrow 2 x^{3}y + 2xy^{3}+2x^2y^2 =9-21$$
$$\Rightarrow 2 x^{3}y + 2xy^{3}+2x^2y^2 = -12 $$
$$\Rightarrow 2xy (x^2 +y^2 + xy) = -12 $$ (taken a common 2xy)
$$\Rightarrow 2xy (3) = -12 $$ (put the value from equestion (1))
$$\Rightarrow 2xy = \dfrac {-12}{3} = - 4 $$
$$\Rightarrow 4xy = - 8 $$ Ans (multiply by 2 both side )
Create a FREE account and get: