If $$p^3 - q^3 = (p-q)\left\{(p-q)^2 - xpq\right\}$$, then find the value of $$x$$ is
Given, Â Â $$p^3-q^3=\left(p-q\right)\left(\left(p-q\right)^2-xpq\right)$$
        $$p^3-q^3=\left(p-q\right)\left(p^2+q^2-2pq-xpq\right)$$
       $$p^3-q^3=\left(p-q\right)\left(p^2+q^2+\left(-2-x\right)pq\right)$$ ..............(1)
We know that
       $$p^3-q^3=\left(p-q\right)\left(p^2+q^2+pq\right)$$ .................................(2)
Comparing both the equations we get
           $$-2-x=1$$
  $$=$$>            $$x=-3$$
Create a FREE account and get: