Question 101

If $$\frac{1}{N}=\frac{(\sqrt{6}+\sqrt{5})}{\sqrt{6}-\sqrt{5}}$$, then what is the value of N ?

Solution

Given : $$\frac{1}{N}=\frac{\sqrt6+\sqrt5}{\sqrt6-\sqrt5}$$

=> $$N=\frac{\sqrt6-\sqrt5}{\sqrt6+\sqrt5}$$

Rationalizing the denominator, we get :

=> $$N=\frac{\sqrt6-\sqrt5}{\sqrt6+\sqrt5}\times\frac{\sqrt6-\sqrt5}{\sqrt6-\sqrt5}$$

=> $$N=\frac{(\sqrt6-\sqrt5)^2}{(\sqrt6+\sqrt5)(\sqrt6-\sqrt5)}$$

=> $$N=\frac{6+5-2(\sqrt6)(\sqrt5)}{6-5}$$

=> $$N=11-2\sqrt{30}$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App